• 1. 
    Given that sin θ = \(\frac{a}{b}\) then cos θ is equal to

  • \(\frac{b}{\sqrt{b^2-a^2}}\)
  • \(\frac{b}{a}\)
  • \(\frac{\sqrt{b^2-a^2}}{b}\)
  • \(\frac{a}{\sqrt{b^2-a^2}}\)
  • 2. 
    Given that sin α = \(\frac{1}{2}\) and cos β = \(\frac{1}{2}\), then the value of (α + β) is

  • 30°
  • 60°
  • 90°
  • 3. 
    If tan θ = 3, then \(\frac{4sin θ-cos θ }{4sin θ+cos θ}\) is equal to

  • \(\frac{2}{3}\)
  • \(\frac{1}{3}\)
  • \(\frac{1}{2}\)
  • \(\frac{3}{4}\)
  • 4. 
    sin (45° + θ) - cos (45° - θ) is equal to

  • 2 cos θ
  • 0
  • 2 sin θ
  • 1
  • 5. 
    If √2 sin (60° - α) = 1 then α is

  • 45°
  • 15°
  • 60°
  • 30°
  • 6. 
    The value of sin² 30° - cos² 30° is

  • -\(\frac{1}{2}\)
  • \(\frac{√3}{2}\)
  • \(\frac{3}{2}\)
  • -\(\frac{2}{3}\)
  • 7. 
    The maximum value of \(\frac{1}{cosec α}\) is

  • 0
  • 1
  • \(\frac{√3}{2}\)
  • -\(\frac{1}{√2}\)
  • 8. 
    If cos (40° + A) = sin 30°, then value of A is

  • 30°
  • 40°
  • 60°
  • 20°
  • 9. 
    If cosec θ - cot θ = \(\frac{1}{3}\), the value of (cosec θ + cot θ) is

  • 1
  • 2
  • 3
  • 4
  • 10. 
    In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is

  • \(\frac{4}{3}\)
  • \(\frac{14}{3}\)
  • \(\frac{5}{3}\)
  • \(\frac{13}{3}\)
Report Question
warning
access_time
  Time