• 1. 
    The curve represented by Im(z²) = k, where k is a non-zero real number, is

  • a pair of striaght line
  • an ellipse
  • a parabola
  • a hyperbola
  • 2. 
    The value of x and y if (3y – 2) + i(7 – 2x) = 0

  • x = 7/2, y = 2/3
  • x = 2/7, y = 2/3
  • x = 7/2, y = 3/2
  • x = 2/7, y = 3/2
  • 3. 
    Find real θ such that (3 + 2i × sin θ)/(1 – 2i × sin θ) is imaginary

  • θ = nπ ± π/2 where n is an integer
  • θ = nπ ± π/3 where n is an integer
  • θ = nπ ± π/4 where n is an integer
  • None of these
  • 4. 
    If {(1 + i)/(1 – i)}n = 1 then the least value of n is

  • 1
  • 2
  • 3
  • 4
  • 5. 
    If arg (z) < 0, then arg (-z) – arg (z) =

  • π
  • -π/2
  • π/2
  • 6. 
    if x + 1/x = 1 find the value of x2000 + 1/x2000 is

  • 0
  • 1
  • -1
  • None of these
  • 7. 
    The value of √(-144) is

  • 12i
  • -12i
  • ±12i
  • None of these
  • 8. 
    If the cube roots of unity are 1, ω, ω², then the roots of the equation (x – 1)³ + 8 = 0 are

  • -1, -1 + 2ω, – 1 – 2ω²
  • – 1, -1, – 1
  • – 1, 1 – 2ω, 1 – 2ω²
  • – 1, 1 + 2ω, 1 + 2ω²
  • 9. 
    (1 – w + w²)×(1 – w² + w4)×(1 – w4 + w8) × …………… to 2n factors is equal to

  • 2n
  • 22n
  • 23n
  • 24n
  • 10. 
    The modulus of 5 + 4i is

  • 41
  • -41
  • √41
  • -√41
Report Question
warning
access_time
  Time