CBSE  /  Class 11  /  Maths  /  Conic Sections
  • 1. 
    The equation of parabola whose focus is (3, 0) and directrix is 3x + 4y = 1 is

  • 16x² - 9y² - 24xy - 144x + 8y + 224 = 0
  • 16x² + 9y² - 24xy - 144x + 8y - 224 = 0
  • 16x² + 9y² - 24xy - 144x - 8y + 224 = 0
  • 16x² + 9y² - 24xy - 144x + 8y + 224 = 0
  • 2. 
    The parametric representation (2 + t², 2t + 1) represents

  • a parabola
  • a hyperbola
  • an ellipse
  • a circle
  • 3. 
    The equation of a hyperbola with foci on the x-axis is

  • x²/a² + y²/b² = 1
  • x²/a² - y²/b² = 1
  • x² + y² = (a² + b²)
  • x² - y² = (a² + b²)
  • 4. 
    The equation of parabola with vertex (-2, 1) and focus (-2, 4) is

  • 10y = x² + 4x + 16
  • 12y = x² + 4x + 16
  • 12y = x² + 4x
  • 12y = x² + 4x + 8
  • 5. 
    If a parabolic reflector is 20 cm in diameter and 5 cm deep then the focus of parabolic reflector is

  • (0 0)
  • (0, 5)
  • (5, 0)
  • (5, 5)
  • 6. 
    The radius of the circle 4x² + 4y² - 8x + 12y - 25 = 0 is?

  • √57/4
  • √77/4
  • √77/2
  • √87/4
  • 7. 
    If (a, b) is the mid point of a chord passing through the vertex of the parabola y² = 4x, then

  • a = 2b
  • 2a = b
  • a² = 2b
  • 2a = b²
  • 8. 
    A rod of length 12 CM moves with its and always touching the co-ordinate Axes. Then the equation of the locus of a point P on the road which is 3 cm from the end in contact with the x-axis is

  • x²/81 + y²/9 = 1
  • x²/9 + y²/81 = 1
  • x²/169 + y²/9 = 1
  • x²/9 + y²/169 = 1
  • 9. 
    The line lx + my + n = 0 will touches the parabola y² = 4ax if

  • ln = am²
  • ln = am
  • ln = a² m²
  • ln = a² m
  • 10. 
    The center of the circle 4x² + 4y² - 8x + 12y - 25 = 0 is?

  • (2,-3)
  • (-2,3)
  • (-4,6)
  • (4,-6)
Report Question
warning
access_time
  Time