• 1. 
    The value of Limn→∞ {1² + 2² + 3² + …… + n²}/n³ is

  • 0
  • 1
  • -1
  • n
  • 2. 
    The value of Limn→∞ (sin x/x) is

  • 0
  • 1
  • -1
  • None of these
  • 3. 
    The value of Limx→0 ax is

  • 0
  • 1
  • 1/2
  • 3/2
  • 4. 
    Let f(x) = cos x, when x ≥ 0 and f(x) = x + k, when x < 0 Find the value of k given that Limx→0 f(x) exists.

  • 0
  • 1
  • -1
  • None of these
  • 5. 
    The value of Limx→0 (1/x) × sin-1 {2x/(1 + x²) is

  • 0
  • 1
  • 2
  • -2
  • 6. 
    Limx→0 sin (ax)/bx is

  • 0
  • 1
  • a/b
  • b/a
  • 7. 
    The value of the limit Limx→0 {log(1 + ax)}/x is

  • 0
  • 1
  • a
  • 1/a
  • 8. 
    If f(x) = (x + 1)/x then df(x)/dx is

  • 1/x
  • -1/x
  • -1/x²
  • 1/x²
  • 9. 
    Limx→0 (e – cos x)/x² is equals to

  • 0
  • 1
  • 2/3
  • 3/2
Report Question
warning
access_time
  Time