• 1. 
    If (|x| – 1)/(|x| – 2) ‎≥ 0, x ∈ R, x ‎± 2 then the interval of x is

  • (-∞, -2) ∪ [-1, 1]
  • [-1, 1] ∪ (2, ∞)
  • (-∞, -2) ∪ (2, ∞)
  • (-∞, -2) ∪ [-1, 1] ∪ (2, ∞)
  • 2. 
    The solution of the -12 < (4 -3x)/(-5) < 2 is

  • 56/3 < x < 14/3
  • 56/3 < x < 14/3
  • 56/3 < x < -14/3
  • -56/3 < x < 14/3
  • 3. 
    If x² = -4 then the value of x is

  • (-2, 2)
  • (-2, ∞)
  • (2, ∞)
  • No solution
  • 4. 
    Solve: |x – 3| < 5

  • (2, 8)
  • (-2, 8)
  • (8, 2)
  • (8, 2)
  • 5. 
    The graph of the inequations x ≥ 0, y ≥ 0, 3x + 4y ≤ 12 is

  • none of these
  • interior of a triangle including the points on the sides
  • in the 2nd quadrant
  • exterior of a triangle
  • 6. 
    If |x| < 5 then the value of x lies in the interval

  • (-∞, -5)
  • (∞, 5)
  • (-5, ∞)
  • (-5, 5)
  • 7. 
    Solve: f(x) = {(x - 1)×(2 - x)}/(x - 3) ≥ 0

  • (-∞, 1] ∪ (2, ∞)
  • (-∞, 1] ∪ (2, 3)
  • (-∞, 1] ∪ (3, ∞)
  • None of these
  • 8. 
    If x² = 4 then the value of x is

  • -2
  • 2
  • -2, 2
  • None of these
  • 9. 
    The solution of the 15 < 3(x - 2)/5 < 0 is

  • 27 < x < 2
  • 27 < x < -2
  • -27 < x < 2
  • -27 < x < -2
  • 10. 
    Solve: 1 ≤ |x - 1| ≤ 3

  • [-2, 0]
  • [2, 4]
  • [-2, 0] ∪ [2, 4]
  • None of these
Report Question
warning
access_time
  Time