Loading [MathJax]/jax/output/CommonHTML/jax.js


  • 1. 
    If y = e, then the value of dydx|is

  • 1
  • 0
  • -1
  • 3e
  • 2. 
    Let f (x) = e, g (x) = sin x and h (x) = f |g(x)|, then h(x)h(x) is equal to

  • e
  • 11x2
  • sin x
  • 1(1x2)
  • 3. 
    If y = ae+ be+ c Where a, b, c are parameters, they y’ is equal to

  • ae– be
  • ae+ be
  • -(ae+ be)
  • ae– be
  • 4. 
    If sin y + e= e, then dydx at (1, π) is equal to

  • sin y
  • -x cos y
  • e
  • sin y – x cos y
  • 5. 
    Derivative of the function f (x) = log(Iog,x), x > 7 is

  • 1x(log5)(log7)(log7x)
  • 1x(log5)(log7)
  • 1x(logx)
  • None of these
  • 6. 
    If y = log x + log y, then dydx is equal to

  • yy1
  • yx
  • log10ex(yy1)
  • None of these
  • 7. 
    If y = log [e(x1x2)1/2], then dydx is equal to

  • 7
  • 3x2
  • 3(x1)
  • None of these
  • 8. 
    If y = e, then dydx is equal to

  • 12 sec² x
  • sec² x
  • sec x tan x
  • e
  • 9. 
    If y = 23 then dydx is equal to dx

  • (log 2) (log 3)
  • (log lg)
  • (log 18²) y²
  • y (log 18)
  • 10. 
    If x= y, then dydx is equal to

  • yx
  • xy
  • 1 + log (xy )
  • 1+logx1+logy
Report Question
warning
access_time
  Time   
0 h : 0 m : 1 s