Processing math: 100%


  • 1. 
    If y = (tan x), then dydx is equal to

  • sec x + cos x
  • sec x+ log tan x
  • (tan x)
  • None of these
  • 2. 
    If x= e then dydx is

  • 1+x1+logx
  • 1logx1+logy
  • not defined
  • y(1+logx)2
  • 3. 
    The derivative of y = (1 – x) (2 – x)…. (n – x) at x = 1 is equal to

  • 0
  • (-1) (n – 1)!
  • n ! – 1
  • (-1)
  • 4. 
    If f(x) = cos x, cos 2 x, cos 4 x, cos 8 x, cos 16 x, then the value of'(π4) is

  • 1
  • √2
  • 12
  • 0
  • 5. 
    x. y= 16, then the value of dydx at (2, 2) is

  • -1
  • 0
  • -1
  • None of these
  • 6. 
    If y = e find dydx =

  • y21y
  • y2y1
  • yy1
  • yy1
  • 7. 
    If x = 1t21+t2 and y = 2t1+t2 then dydx is equal to dx

  • yx
  • yx
  • xy
  • xy
  • 8. 
    If x = a cosθ, y = a sinθ. then dydx at θ = 3π4 is

  • -1
  • 1
  • -a²
  • 9. 
    If x = sin(3t – 4t³) and y = cos(1t2) then dydx is equal to

  • 12
  • 25
  • 32
  • 13
  • 10. 
    If x = e sin t, y = e cos t, t is a parameter, then dydx at (1, 1) is equal to

  • 12
  • 14
  • 0
  • 12
Report Question
warning
access_time
  Time