• 1. 
    If y = sec x then

  • 0 ≤ y ≤ π
  • 0 ≤ y ≤ \(\frac{π}{2}\)
  • –\(\frac{π}{2}\) < y < \(\frac{π}{2}\)
  • None of these
  • 2. 
    If x + \(\frac{1}{x}\) = 2 then the principal value of sin x is x

  • \(\frac{π}{4}\)
  • \(\frac{π}{2}\)
  • π
  • \(\frac{3π}{2}\)
  • 3. 
    The principle value of sin(sin\(\frac{2π}{3}\)) is

  • \(\frac{2π}{3}\)
  • \(\frac{π}{3}\)
  • \(\frac{-π}{6}\)
  • \(\frac{π}{6}\)
  • 4. 
    Algebraic expression for sin (cot x) is

  • \(\frac{1}{1+x^2}\)
  • \(\frac{1}{\sqrt{1+x^2}}\)
  • \(\frac{x}{\sqrt{1+x^2}}\)
  • None of these
  • 5. 
    Princal value of tan (-1) is

  • \(\frac{π}{4}\)
  • \(\frac{-π}{2}\)
  • \(\frac{5π}{4}\)
  • \(\frac{-π}{4}\)
  • 6. 
    Principal value of sin(\(\frac{1}{√2}\))

  • \(\frac{π}{4}\)
  • \(\frac{3π}{4}\)
  • \(\frac{5π}{4}\)
  • None of these
  • 7. 
    sin x = y Then

  • 0 ≤ y ≤ π
  • –\(\frac{π}{2}\) ≤ y ≤ \(\frac{π}{2}\)
  • 0 < y < π
  • –\(\frac{π}{2}\) < y < –\(\frac{π}{2}\)
  • 8. 
    cos(cos\(\frac{7π}{6}\)) is equal to

  • \(\frac{7π}{6}\)
  • \(\frac{5π}{6}\)
  • \(\frac{π}{3}\)
  • \(\frac{π}{6}\)
  • 9. 
    sin[\(\frac{π}{3}\) – sin(-\(\frac{1}{2}\))] is equal to

  • \(\frac{1}{2}\)
  • \(\frac{1}{3}\)
  • \(\frac{1}{4}\)
  • 1
  • 10. 
    tan\(\frac{1}{2}\) + tan\(\frac{2}{11}\) = tan a then a = ?

  • \(\frac{1}{4}\)
  • \(\frac{1}{2}\)
  • \(\frac{3}{4}\)
  • 1
Report Question
warning
access_time
  Time