CBSE  /  Class 12  /  Maths  /  Vector Algebra
  • 1. 
    According to the associative lass of addition of addition of s ector

  • \(\vec{b}\), \(\vec{a}\)
  • \(\vec{a}\), \(\vec{b}\)
  • \(\vec{a}\), 0
  • \(\vec{b}\), 0
  • 2. 
    Which one of the following can be written for (\(\vec{a}\) – \(\vec{b}\)) × (\(\vec{a}\) + \(\vec{b}\))

  • \(\vec{a}\) × \(\vec{b}\)
  • 2\(\vec{a}\) × \(\vec{b}\)
  • \(\vec{a}\)² – \(\vec{b}\)
  • 2\(\vec{b}\) × \(\vec{b}\)
  • 3. 
    The points with position vectors (2. 6), (1, 2) and (a, 10) are collinear if the of a is

  • -8
  • 4
  • 3
  • 12
  • 4. 
    |\(\vec{a}\) + \(\vec{b}\)| = |\(\vec{a}\) – \(\vec{b}\)| then the angle between \(\vec{a}\) and \(\vec{b}\)

  • \(\frac{π}{2}\)
  • 0
  • \(\frac{π}{4}\)
  • \(\frac{π}{6}\)
  • 5. 
    |\(\vec{a}\) × \(\vec{b}\)| = |\(\vec{a}\).\(\vec{b}\)| then the angle between \(\vec{a}\) and \(\vec{b}\)

  • 0
  • \(\frac{π}{2}\)
  • \(\frac{π}{4}\)
  • π
  • 6. 
    If ABCDEF is a regular hexagon then \(\vec{AB}\) + \(\vec{EB}\) + \(\vec{FC}\) equals

  • zero
  • 2\(\vec{AB}\)
  • 4\(\vec{AB}\)
  • 3\(\vec{AB}\)
  • 7. 
    Which one of the following is the modulus of x\(\hat{i}\) + y\(\hat{j}\) + z\(\hat{k}\)?

  • \(\sqrt{x^2+y^2+z^2}\)
  • \(\frac{1}{\sqrt{x^2+y^2+z^2}}\)
  • x² + y² + z²
  • none of these
  • 8. 
    If C is the mid point of AB and P is any point outside AB then,

  • \(\vec{PA}\) + \(\vec{PB}\) = 2\(\vec{PC}\)
  • \(\vec{PA}\) + \(\vec{PB}\) = \(\vec{PC}\)
  • \(\vec{PA}\) + \(\vec{PB}\) = 2\(\vec{PC}\) = 0
  • None of these
  • 9. 
    If \(\vec{OA}\) = 2\(\vec{i}\) – \(\vec{j}\) + \(\vec{k}\), \(\vec{OB}\) = \(\vec{i}\) – 3\(\vec{j}\) – 5\(\vec{k}\) then |\(\vec{OA}\) × \(\vec{OB}\)| =

  • 8\(\vec{i}\) + 11\(\vec{j}\) – 5\(\vec{k}\)
  • \(\sqrt{210}\)
  • sin θ
  • \(\sqrt{40}\)
  • 10. 
    If |a| = |b| = |\(\vec{a}\) + \(\vec{b}\)| = 1 then |\(\vec{a}\) – \(\vec{b}\)| is equal to

  • 1
  • √3
  • 0
  • None of these
Report Question
warning
access_time
  Time