CBSE  /  Class 12  /  Maths  /  Vector Algebra
  • 1. 
    If |\(\vec{a}\)| 4 and – 3 ≤ λ ≤ 2, then the range of |λ\(\vec{a}\)| is

  • [0, 8]
  • [-12, 8]
  • [0, 12]
  • [8, 12]
  • 2. 
    The number of vectors of unit length perpendicular to the vectors \(\vec{a}\) = 2\(\hat{i}\) + \(\hat{j}\) + 2\(\hat{k}\) and \(\vec{b}\) = \(\hat{j}\) + \(\hat{k}\) is

  • one
  • two
  • three
  • infinite
  • 3. 
    If (\(\frac{1}{2}\), \(\frac{1}{3}\), n) are the direction cosines of a line, then the value of n is

  • \(\frac{\sqrt{23}}{6}\)
  • \(\frac{23}{6}\)
  • \(\frac{2}{3}\)
  • –\(\frac{3}{2}\)
  • 4. 
    Find the magnitude of vector 3\(\hat{i}\) + 2\(\hat{j}\) + 12\(\hat{k}\)

  • \(\sqrt{157}\)
  • 4\(\sqrt{11}\)
  • \(\sqrt{213}\)
  • 9√3
  • 5. 
    Three points (2, -1, 3), (3, – 5, 1) and (-1, 11, 9) are

  • Non-collinear
  • Non-coplanar
  • Collinear
  • None of these
  • 6. 
    The vectors 3\(\hat{i}\) + 5\(\hat{j}\) + 2\(\hat{k}\), 2\(\hat{i}\) – 3\(\hat{j}\) – 5\(\hat{k}\) and 5\(\hat{i}\) + 2\(\hat{j}\) – 3\(\hat{k}\) form the sides of

  • Isosceles triangle
  • Right triangle
  • Scalene triangle
  • Equilateral triangle
  • 7. 
    The points with position vectors 60\(\hat{i}\) + 3\(\hat{j}\), 40\(\hat{i}\) – 8\(\hat{j}\) and a\(\hat{i}\) – 52\(\hat{j}\) are collinear if

  • a = -40
  • a = 40
  • a = 20
  • None of these
  • 8. 
    The ratio in which 2x + 3y + 5z = 1 divides the line joining the points (1, 0, -3) and (1, -5, 7) is

  • 5 : 3
  • 3 : 2
  • 2 : 1
  • 1 : 3
  • 9. 
    If O is origin and C is the mid point of A (2, -1) and B (-4, 3) then the value of \(\bar{OC}\) is

  • \(\hat{i}\) + \(\hat{j}\)
  • \(\hat{i}\) – \(\hat{j}\)
  • –\(\hat{i}\) + \(\hat{j}\)
  • –\(\hat{i}\) – \(\hat{j}\)
  • 10. 
    If ABCDEF is regular hexagon, then \(\vec{AD}\) + \(\vec{EB}\) + \(\vec{FC}\) is equal

  • 0
  • 2\(\vec{AB}\)
  • 3\(\vec{AB}\)
  • 4\(\vec{AB}\)
Report Question
warning
access_time
  Time