• 1. 
    Simple random sampling.Stratified sampling.Sampling without replacement.Sampling with replacement.All of the above are ____________.

  • process of sampling
  • types of sampling
  • classification of sampling
  • order or sampling
  • 2. 
    Of the following what are the Density based clustering algorithms?

  • DBSCAN
  • OPTICS
  • BIRCH
  • Both A & B
  • 3. 
    Temperature, height and weight are ____________.

  • Continuous Attributes
  • Dynamic Attributes
  • Low Class Attributes
  • Discrete Attributes
  • 4. 
    Kepanjangan dari SRIPS-DM adalah ...

  • Cross Information Standard Process for Data Mining
  • Cross Industry Standard Process for Data Mining
  • Central Information Standard Process for Data Mining
  • Central Industry Standard Process for Data Mining
  • 5. 
    8.) ____is a clustering approach that performs clustering by incorporation of user-specified or application-oriented constraints.

  • Density-based
  • Model-based
  • Constraint-based
  • Neither positive nor negative
  • 6. 
    Data set may include data objects that are duplicates, or almost duplicates of one another.Major issue when merging data from heterogeneous sources refers to ____________.

  • Noise
  • Outliers
  • Missing values
  • Duplicate data
  • 7. 
    Dalam Knowladge Discovery and Database (KDD) Seleksi Data adalah ....

  • data digabungkan dari berbagai sumber
  • data yang relevan dengan proses analisis diambil dari basis data
  • data ditransformasikan atau digabungkan ke dalam bentuk yang sesuai untuk di‐mine dengan cara dilakukan peringkasan atau operasi agregasi
  • merupakan proses yang penting dalam KDD dimana metode‐metode cerdas diaplikasikan untuk mengekstrak pola‐pola data
  • 8. 
    10.) ____is an algorithm that performs expectation-maximization analysis based on statistical modeling.

  • COBWEB
  • EM
  • SOM
  • SNIG
  • 9. 
    Association rule mining can be viewed that it consists of step(s) _____________

  • Find all frequent itemsets
  • Generate strong association rules from the frequent itemsets
  • Both of the above
  • None of the above
  • 10. 
    _________ stores relational data that include time-related attributes.

  • temporal database
  • sequence database
  • time series database
  • all of the above
  • 11. 
    Which of the following is not involving data mining

  • Knowledge discovery
  • Data archaeology
  • Data exploration
  • Data transformation
  • 12. 
    Zip codes and click counts are ____________.

  • Continuous Attributes
  • Dynamic Attributes
  • Discrete Attributes
  • High Class Attributes
  • 13. 
    OLAP stands for ________.

  • Online Analytical Processing
  • Online Linear Analytical Processing
  • Online Analytical Problem
  • 14. 
    25.) WaveCluster applies wavelet transformation for clustering analysis and is both grid-based and density-based

  • True
  • False
  • 15. 
    The issues like efficiency, scalability of data mining algorithms comes under ________

  • Performance issues
  • Diverse data type issues
  • Mining methodology and user interaction
  • All of the above
  • 16. 
    Of the following identify the problems that can be solved by cluster analysis

  • Outlier Detection
  • Community detection in social network
  • Customer segmentation
  • All Of above
  • 17. 
    Which of the following are the Attribute Classification?

  • Continuous Attribute and Discrete Attribute.
  • High Class Attribute and Low Class Attribute
  • Dynamic Attribute and Discrete Attribute
  • Continuous Attribute and Dynamic Attribute
  • 18. 
    24.) A ratio-scaled variable makes a negative measurement on a nonlinear scale.

  • True
  • False
  • 19. 
    A grocery store retailer is trying to decide whether to put bread on sale. This is related to which data mining task?

  • Association
  • Outlier analysis
  • Summarization
  • Prediction
  • 20. 
    _________ stores sequences of values or events obtained over repeated measurements of time.

  • temporal database
  • sequence database
  • time series database
  • all of the above
  • 21. 
    An itemset X is ……………….in a data set S if there exists no proper super-itemsets Y such that Y has the same support count as X in S.

  • Closed
  • Maximal
  • Complete
  • None of the above
  • 22. 
    What should be written in the blue box?

  • Transformed data
  • Pattern/model
  • Preprocessed data
  • Raw data
  • 23. 
    Of the following what are the distance based clustering algorithms?

  • K-Means
  • K-Medoids
  • Hierarchical
  • All Of above
  • 24. 
    Spatial Data, Temporal Data, Sequential Data, and Genetic Sequence are examples of which type of data set?

  • Numerical
  • Ordered
  • Record
  • Graph
  • 25. 
    Information is not collected refers to ____________.

  • Noise
  • Outliers
  • Missing values
  • Duplicate data
Report Question
warning
access_time
  Time