• 1. 
    What is the value of \(2 + \frac{1}{2} + \frac{3}{2} + \frac{5}{2} + \frac{7}{2}\)

  • 10
  • 16
  • 8
  • 12
  • 2. 
    If \(\sqrt[3]{{{3^n}}} = 81,\) then the value of n is:

  • 9
  • 16
  • 12
  • 3
  • 3. 
    Simplify: 4 – 1 + 5 × 6 ÷ 2 – 1 = ?

  • 11
  • -3
  • 17
  • 19
  • 4. 
    Which value is closest to [(5.168 × 4453 × 3.194) / (67.999 × 4224.017)]

  • 0.2
  • 0.002
  • 2
  • 0.02
  • 5. 
    The value of \(\frac{{\sqrt {\sqrt {21 - 9\sqrt 5 } \times \sqrt {21 + 9\sqrt 5 } } }}{{\sqrt {12} \times \sqrt {\left( {18 - 8\sqrt 5 } \right) \times \left( {18 + 8\sqrt 5 } \right)} }}\)

  • \(\frac{1}{2}\)
  • 2
  • \(\frac{1}{{2\sqrt 2 }}\)
  • \(\frac{1}{{\sqrt 2 }}\)
  • 6. 
    Which of the following number is largest among all? \(0.7,\;0.\bar 7,\;0.0\bar 7,0.\overline {07}\)

  • \(0.\overline {07} \)
  • \(0.0\bar 7\)
  • 0.7
  • \(0.\bar 7\)
  • 7. 
    Which of the following fractions is the highest of all?

  • 5/4
  • 4/3
  • 3/2
  • 6/5
  • 8. 
    If 0.023 ÷ P3 = 23, then 5P is equal to –

  • 0.001
  • 0.1
  • 0.5
  • 50
  • 9. 
    If \(x = \sqrt {\frac{{\sqrt {10} + 1}}{{\sqrt {10} - 1}}}\), then the value of (x2 - x - 1) is –

  • \(- \frac{{\sqrt {10} + 1}}{8}\)
  • \(- \frac{{\sqrt {10} - 1}}{8}\)
  • \(- \frac{{\sqrt {10} + 1}}{9}\)
  • \(- \frac{{\sqrt {10} + 2}}{9}\)
  • 10. 
    Compute: (28854 ÷ 458) ÷ 9

  • 70
  • 567
  • 7
  • 576
  • 11. 
    If the numbers \(\sqrt[3]{9},\;\sqrt[4]{{20}},\;\sqrt[6]{{25}}\) are arranged in ascending order, then the right arrangement is

  • \(\sqrt[6]{{25}},\;\sqrt[4]{{20}},\sqrt[3]{9}\)
  • \(\sqrt[3]{9},\sqrt[4]{{20}},\sqrt[6]{{25}}\)
  • \(\sqrt[4]{{20}},\sqrt[6]{{25}},\;\sqrt[3]{9}\)
  • \(\sqrt[6]{{25}},\;\sqrt[3]{9},\sqrt[4]{{20}}\)
  • 12. 
    If the fractions 7/13, 2/3, 4/11, 5/9 are arranged in ascending order, then the correct sequence is ?

  • 2/3, 7/13, 4/11, 5/9
  • 7/13, 4/11, 5/9, 2/3
  • 4/11, 7/13, 5/9, 2/3
  • 5/9, 4/11, 7/13, 2/3
  • 13. 
    What approximate value should come in place of the question mark (?) in the following question? (Note: You are not expected to calculate the exact value.) 54336 ÷ 150 ÷ 4 = ?

  • 85
  • 91
  • 93
  • 88
  • 14. 
    75% is equal to

  • 6/9
  • 3/8
  • 6/8
  • 15/25
  • 15. 
    What is the difference between 0.6 and 0.6%?

  • 5.94
  • 0.594
  • 60
  • 54
  • 16. 
    If x = 1 + √6 + √7, then the value of \(\left( {x + \frac{1}{{x - 1}}} \right)\) is

  • 1 + 2√7
  • 6 + √7
  • 1 + 2√6
  • 2√7 – 1
  • 17. 
    Simplify:- 40% of ? = 960

  • 2200
  • 2600
  • 2960
  • 2400
  • 18. 
    Find the value of \(\sqrt { - \sqrt 3 + \sqrt {3 + 8\sqrt {7 + 4\sqrt 3 } } } \)

  • -4
  • 4
  • 2
  • -2
  • 19. 
    Simplified value of \(\frac{{3.47 \times 3.47 - 2.53 \times 2.53}}{{0.94}} - \frac{{25.50}}{{12.75}}\) is

  • 4
  • 7
  • 5
  • 6
  • 20. 
    60% of 40% of 150% of 52 = ?

  • 20.21
  • 18.72
  • 17.78
  • 24.23
  • 21. 
    Simplify:- (0.08% of 1350) – (0.04% of 850) = ?

  • 64
  • 74
  • 0.74
  • 7.4
  • 22. 
    \(\sqrt {43 + \sqrt {32 + \sqrt {4 + \sqrt {130 + \sqrt {196} } } } }\) is equal to

  • 7
  • 6
  • 8
  • 10
  • 23. 
    Correct expression of \(0.0\overline {18} = ?\)

  • 1/55
  • 18/100
  • 18/1000
  • 1/66
  • 24. 
    Which of the following statement(s) is/are TRUE? I. 2√3 > 3√2 II. 4√2 > 2√8

  • Only I
  • Only II
  • Neither I nor II
  • Both I and II
  • 25. 
    Solve: (?)3 × 10 = 13230 ÷ (9.261 ÷ 7)

  • 10
  • 25
  • 125
  • 0.5
  • 26. 
    If (3 + 2√5)2 = 29 + K√5, then what is the value of K?

  • 12
  • 6
  • 29
  • 39
  • 27. 
    In an examination a student must get 36% marks to pass. A student who gets 190 marks failed by 35 marks. The total marks in that examination is:

  • 500
  • 625
  • 810
  • 450
  • 28. 
    The simple form of the following expanded form of numbers is 6.06 × 104 + 7 × 103 + 5 × 10

  • 607650
  • 67652
  • 67655
  • 67650
  • 29. 
    What should come in the place of question mark (?) in the following question? \(\frac{1}{5} + \frac{1}{{15}} - ? = \frac{1}{4}\)

  • 1/40
  • 1/60
  • 1/30
  • 1/20
Report Question
warning
access_time
  Time